Point mutations which drastically affect the polymerization activity of encephalomyocarditis virus RNA-dependent RNA polymerase correspond to the active site of Escherichia coli DNA polymerase I.
نویسندگان
چکیده
The inhibitor sensitivity and functional domains of recombinant encephalomyocarditis (EMC) virus RNA-dependent RNA polymerase (3Dpol) have been extensively analyzed. The inhibitor profiles of EMC virus 3Dpol and Escherichia coli DNA-dependent RNA polymerase are distinct, and experiments with substrate analogs indicate that EMC virus 3Dpol lacks reverse transcriptase activity. Twenty amino acid substitutions were engineered in EMC virus 3Dpol based on sequence alignments of viral RNA-dependent RNA polymerases that identified conserved amino acid residues within motifs. Ten out of 17 conservative substitutions within the four most conserved motifs reduced the RNA polymerase activity of the mutants to 0-6% of the activity of the wild-type enzyme, demonstrating the importance of these amino acids in the structure and/or function of EMC virus 3Dpol. Remarkably, 5 of the 10 mutations in EMC virus 3Dpol which had the most drastic effect on its RNA polymerase activity (D240E, S293T, N302Q, G332A, and D333E) were found to correspond to active site residues in E. coli DNA-dependent DNA polymerase I (Klenow). Our results reveal that a basic structural and functional framework is conserved in the most distantly related classes of nucleic acid polymerases and demonstrate the validity of modeling the active site of an RNA-dependent RNA polymerase on the known structure of a DNA polymerase.
منابع مشابه
Expression, purification, and properties of recombinant encephalomyocarditis virus RNA-dependent RNA polymerase.
Encephalomyocarditis (EMC) virus RNA-dependent RNA polymerase was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST), which allowed easy purification of the fusion protein by affinity chromatography on immobilized glutathione. Inclusion of a thrombin cleavage site between the GST carrier and the viral enzyme facilitated the release of purified mature EMC viru...
متن کاملEncephalomyocarditis virus RNA polymerase preparations, with and without RNA helicase activity.
RNA template- and primer-dependent preparations of RNA polymerase were purified from encephalomyocarditis virus-infected Krebs-2 cells, using a three-step chromatographic procedure. The RNA duplex-unwinding activity of these preparations was investigated by two assays, using a partially double-stranded RNA template (encephalomyocarditis virus RNA annealed with a long segment of antisense transc...
متن کاملAntibacterial Activity of the Peptide Microcin J25 Produced by Escherichia coli
Background and objectives: Bacteriocins are generally active antimicrobial peptides effective against bacteria closely related to the producer. Escherichia coli produce two bacteriocins: colicins and microcins. Microcin J25 (Mcc J25) is an antibacterial peptide that inhibits bacterial transcription by disrupting the nucleotide-uptake channel of bacterial RNA polymerase. The objective of this st...
متن کاملLipiarmycin, a new antibiotic from Actinoplanes III. Mechanism of action.
In vivo, at low concentrations (less than or equal to 1 mug/ml), the antibiotic lipiarmycin specifically inhibits RNA synthesis in Bacillus subtilis. At a much higher concentration (100 mug/ml), syntheses of other macromolecules such as DNA and protein also appear to be suppressed. In vitro, the antibiotic caused 50% inhibition of DNA-dependent RNA-polymerase from B. subtilis at a concentration...
متن کاملConstruction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 14 شماره
صفحات -
تاریخ انتشار 1992